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Abstract

The Regional Ocean Modeling System (ROMS) is a regional ocean gen-
eral circulation modeling system solving the free surface, hydrostatic, primi-
tive equations over varying topography. It is free software distributed world-
wide for studying both complex coastal ocean problems and the basin-to-global
scale ocean circulation. The original ROMS code could only be run on shared-
memory systems. With the increasing need to simulate larger model domains
with finer resolutions and on a variety of computer platforms, there is a need
in the ocean-modeling community to have a ROMS code that can be run on
any parallel computer ranging from 10 to hundreds of processors. Recently, we
have explored parallelization for ROMS using the MPI programming model. In
this paper, an efficient parallelization strategy for such a large-scale scientific
software package, based on an existing shared-memory computing model, is
presented. In addition, scientific applications and data-performance issues on
a couple of SGI systems, including Columbia, the world’s third-fastest super-
computer, are discussed.

Keywords: regional Ocean modeling, parallelization, scalability, perfor-
mance

1 Introduction

Ocean modeling plays an important role in both understanding current climatic condi-
tions and predicting future climate change. In situ oceanographic instruments provide
only sparse measurements over the world ocean. Although remote-sensed data from



satellites cover the globe, they only provide information on the ocean surface. In-
formation below the ocean surface has to be obtained from three-dimensional ocean
models.

ROMS solves the free-surface, hydrostatic, primitive equations over varying topog-
raphy by using stretched terrain-following coordinates in the vertical and orthogonal
curvilinear coordinates in the horizontal. The objective of this model is to enable
the study of complex coastal ocean problems, as well as basin-to-global scale ocean
circulation. This is in sharp contrast to more popular ocean models, such as the Mod-
ular Ocean Model (MOM) or Parallel Ocean Program (POP), which were primarily
designed for basin-scale and global-scale problems.

Recently we fully explored parallelization for the ROMS ocean model with a
message-passing interface (MPI) implementation. In this paper, parallelization strate-
gies for such a large-scale scientific software package, based on an existing shared-
memory model are investigated with a MPI-programming model so that users can
have great flexibility in choosing various parallel computing systems. The model’s
performance, efficiency, and its applications for realistic ocean modeling are discussed
below.

2 ROMS-an Ocean Model Using a Generalized
Topography-Following Coordinate System

The shared-memory ROMS [1] developed at the University of California at Los An-
geles (UCLA) was based on the serial version of the S-Coordinate Rutgers University
Model (SCRUM) [2]. This model solves the three-dimensional, free-surface, primitive
equations separately for their external mode, which represents the vertical averaged
flow, and the internal mode, which represents deviations from the vertically averaged
flow. The external-mode equations are coupled with the internal-mode equations
through the nonlinear and pressure-gradient terms [3].

A short time step is used for solving the external mode equations, which satisfies
the CFL condition arising from the fast-moving surface gravity waves. In order to
avoid the errors associated with the aliasing of frequencies resolved by the external
steps (but unresolved by the internal step), the external fields are “time averaged”
before they replace those values obtained with a longer internal step. A cosine-
shaped time filter, centered at the new time level, is used to average the external
fields. In addition, the separated time stepping is constrained to maintain exact
volume conservation and constancy preservation properties that are both needed for
the tracer equations.

In the horizontal direction, the primitive equations are evaluated using boundary-
fitted, orthogonal, curvilinear coordinates on a staggered Arakawa C-grid [4]. Coastal
boundaries can also be specified as a finite-discretized grid via land-sea masking.

The model is documented in each file component [5] with irregular coastal geome-
tries and is available to many scientists and researchers for a variety of applications.
The model has been shown to be capable of dealing with the irregular coastal geom-



etry, continental shelf/slope topography, and strong atmospheric forcing. It has been
successfully tested for many different problems. Due to the many different applica-
tions, it is necessary to implement an efficient parallel version of ROMS that can be
run on a variety of computing platforms.

3 The Parallelization of ROMS

Currently there are two major parallel computer models — a distributed-memory
model and a shared-memory model. Between these two systems, a hybrid model,
such as a cluster of SMPs, is also available. Each of these systems require a different
programming model. On a distributed-memory computing system, a Message Pass-
ing Interface (MPI) software is usually used for intercommunication among different
computing processors for applications using domain decomposition techniques, while
system directives are used on a shared-memory system to parallelize sequential codes.

These three models each have their own advantages and disadvantages, but they
all have to deal with similar issues, such as parallel software portability, software
reuse and maintainability, and more importantly, the total time required to transform
existing code into code that is executable on advanced parallel systems. The debate
about whether the shared-memory or message-passing paradigm is the best is bound
to continue for a while. However, many people believe that thread programming
allows the general user to gain a reasonable amount of parallelism for a reasonable
amount of effort. It is commonly believed that an MPI helps attain better parallel
speedups and portability, but it may require more complicated programming by the
user. For applications where performance and portability are more important, an
MPI model might be a good choice, but for other applications where time is critical,
a thread model can be applied because of its simplicity.

3.1 Parallel System and Programming Models

The SGI Origin 2000 at Jet Propulsion Laboratory in Pasadena, CA, was the system
available for use during the period when this research was conducted. This system is
a scalable, distributed, shared-memory architecture with MIPS R10000, 64-bit super-
scalar processors. The memory is physically distributed throughout the system for
fast processor access. Shared-bus symmetric multiprocessing systems typically utilize
a snoopy protocol to provide cache coherence. It implements a hierarchical memory-
accessing structure known as NUMA (Non-Uniform Memory Access). From lowest
latency to highest, there are four levels of memory access: (1) processor registers;
(2) cache — the primary and secondary caches residing on the processor; (3) home
memory; and (4) remote cache. Because of the hardware design, it allows users
to run two different programming models — a thread programming model and a
distributed-memory programming model, such as MPI code. Each model requires a
different approach.

Recently, we had access to NASA’s Columbia supercomputer, which ranked third
on the 2005 TOP500 List of the world’s fastest computers. It has 20 SGI Altix



3700 superclusters, each with 512 processors and global shared memory across each
supercluster. Currently, the processor speed is 1.5 GHz, which makes it possible for
NASA to achieve breakthroughs in science and engineering for the agency’s missions,
including the Vision for Space Exploration. Columbia’s highly advanced architecture
will also be made available to a broader national science and engineering community.
We report here our early performance data from the SGI Origin 2000, and some recent
performance data from the Columbia supercomputer, as well.

3.2 An MPI Programming Model for the ROMS

A parallel-thread version of ROMS has recently been developed on the SGI Origin
2000 by the UCLA ocean research group and works well for many test cases. However,
the thread version is still limited by certain hardware used. In order to improve its
portability and efficiency, the design of an MPI version of ROMS was required. Our
objective was to design a parallel MPI version of ROMS and to minimize the modi-
fications to the code so that the original numerical algorithms remained unchanged,
and any user of ROMS could easily use this parallel version without any specific
training in parallel computing.

To achieve this objective, we focused on the data structures of the code to dis-
cover all possible data dependencies. After the entire package was investigated, the
horizontal 2D computing domain was chosen as our candidate for parallelization since
the depth length scale is much smaller compared with the horizontal scale. Based
on domain decomposition techniques and the MPI communication API (Application
Programming Interface) [6], a parallel MPI ROMS has been developed. In order to
achieve load balancing and to exploit maximal parallelism, a general and portable
parallel structure based on domain decomposition techniques was used for the flow
domain, which has 1D and 2D partition features and can be chosen according to
different geometries.

For example, if the computational region is narrow, a 1D partition structure can be
used so the computation domain is divided into N subdomains in one direction. For a
rectangular region, a 2D partition structure with N x M subdomains in the horizontal
will be used for parallelization to minimize the communication across the partition
boundaries. Since ROMS covers various computational domains, the flexible partition
structure is necessary to control the parallel efficiency. The depth has a much smaller
scale compared with the surface area, so the 1D and 2D partition method will give a
very good efficiency for this kind of application.

The MPI software is used for the internal communication encountered when each
sub-domain on each processor needs its neighbor’s boundary data information — two
ghost cells data are needed by the numerical algorithm. The module for communi-
cation is implemented separately from the main ROMS package, and it can also be
used by other sequential software applications with similar data structures for par-
allelization. After various tests of the communication module, the combinations of
UNBLOCK RECEIVES, MPI BLOCK SENDS and MPI WAIT were used for data
exchange on the partition boundaries, which provided the best results among the
choices available in the MPI communication module. When a 2D partition structure



is used, an internal subdomain needs to exchange data within two ghost cells on its
four side boundaries and four corners with its neighbor subdomains.

Besides communications among some internal grid points, the communication
module is also required for boundary points communications if periodic boundary con-
ditions are applied. Also, for a subdomain that has other physical boundaries rather
than periodic boundary conditions or internal subdomain neighbors, it only needs to
exchange its information with neighbors that are internal grid points; elsewhere it
will take the physical boundary conditions instead of doing MPI communications.

With the 2D partition structure, the MPI communications for a subdomain are
outlined as follows. The boundary conditions that need to be handled separately are
not discussed here.

MPI communication module for ROMS :

Begin module

Loop sides

If (side == intermal ) then

Pack data

MPI_Irecv the neighbor data

MPI_Send data on the boundary to the neighbor
Unpack data

End if

End Loop

Loop corners

If (corner == internal ) then

Pack data

MPI_Irecv the neighbor data

MPI_Send data on the boundart to the neighbor
Unpack data

End if

End Loop

Loop sides

If (side == internal ) then
MPI_Wait

End if

End Loop

Loop corners

If (corner == internal ) then
MPI_Wait

End if

End Loop



MPI_Barrier

End module

The implementation was carried out on the distributed memory systems, and
the code ran well on the SGI Origin 2000. It can be easily ported to other parallel
systems that support MPI. Recently, the code has been successfully ported to other
supercomputers, like Columbia at NASA Ames (SGI Altix), the world’s third-fastest
supercomputer.

4 Performance

For the parallel version of ROMS, timing tests were performed on the SGI Origin
2000 and SGI Altix. Figure 1 shows the wallclock time of the MPI code required on
the SGI Origin 2000 to integrate a model grid size of 1024 x 1024 x 20 for a fixed total
simulation time. Figure 2 shows the wallclock time of the MPI code required on the
SGI Altix to integrate a model grid size of 1520 x 1088 x 30 for a fixed total simulation
time. The total wallclock time is significantly reduced by using more processors for
both small and medium grid size problems on both systems.

Figures 3 and 4 show the speedup of the parallel MPI ROMS with a couple of
different problem sizes on both the old system (SGI Origin 2000) and the new system
(SGI Altix). They give excellent speedup versus the number of processors. From
the point of view of scalability, a large grid size problem gives better scaling results
— superlinear scalability is achieved on 20 processors for a problem with a grid size
256 x 256 x 20, and the scaling results for a problem with a grid size 256 x 128 x 20
are also excellent for smaller numbers of processors. On the SGI Altix, superlinear
scalability is achieved on up to 200 processors for a problem with a grid size of
1520 x 1088 x 30.

The usual explanation for superlinear speedup is that when more processors are
involved, code fits into the cache better. Once the size of the problem becomes smaller
than the number of CPUs multiplied by cache size, the superlinear speedup ends and
communication overhead causes performance degradation.

The SGI Origin 2000 is an older system, and the SGI Altix is a modern system, but
our code shows excellent scalability on both systems. These systems are suitable to
run large-scale scientific applications with a large number of processors if the parallel
code is designed to take advantage of the hardware strengths. The speedup curves
have a slight non-linear bend when more processors are applied, which is due to the
increase of communication work for a fixed size problem. Once we find the region
with the superlinear scalability, we can adjust our problem size and the number of
processors to efficiently use the scalable computing system.

Additional numerical experiments were conducted with various grid sizes and num-
bers of processors. Table 1 gives the performance data of the parallel ROMS code
with different grid sizes for 6000 time steps. The largest problem has a global grid of



PES 1 2 4 8 16 32 64
Grid size 128x128 | 128x256 | 256x256 | 256x512 | 512x512 | 512x1024 | 1024x1024
x20 x20 x20 x20 x20 x20 x20
MPI Code | 184 185 195 201 207 229 327

Table 1: Wallclock times (seconds) using different numbers of processors and grid
sizes on the SGI Origin 2000.

PES

4

8 16

32

64

MPI Code

6410

3108

1635

1121

758

Table 2: Wallclock times (seconds) using different numbers of processors for the
Pacific Ocean model with a fixed total simulation time on the SGI Origin 2000 for a
small size problem (1024 x 1024 x 20).

PES

32

64

128 2

26

MPI Code

134725

97595

27815 | 19

915

Table 3: Wallclock times (seconds) using different numbers of processors for the North
Pacific Ocean model with a fixed total simulation time on the SGI Altix for a medium

size problem (1520 x 1088 x 30).




1024 x 1024 x 20 distributed on 64 processors. From this table, the MPI code scales
well with up to 16 processors, but when the number of processors goes to 64, the
MPI code efficiency decreases due to the increases in the communication overhead,
the hierarchical memory access structure of the SGI Origin 2000, and the original
design of the sequential code. The code was initially developed on sequential comput-
ing systems, so despite technological advancements, the ROMS code performance on
modern computers is seriously constrained because traditional programming methods
for a single-CPU system will not fully exploit the benefits of today’s supercomputers
and parallel systems. These systems require modern programming methods to use
their fast CPUs and large memory systems. In order to use these systems efficiently,
most existing codes require certain modifications. Once appropriate optimization
techniques are applied, the code performance will improve dramatically [7].

Table 2 gives the performance data of the parallel ROMS code with different
numbers of processors on the SGI Origin 2000 for the above application with 1024 x
1024 x 20 for a fixed total simulation time. It shows very good speedup to 64 processors
for this test problem.

On the SGI Altix, Table 3 gives the detailed performance data of the parallel
ROMS code with different numbers of processors for the North Pacific model with a
larger grid size problem of 1520 x 1088 x 30 for a fixed total simulation time. It shows
very good speedup to 256 processors for this real 3D problem. Numerical results of
the application are discussed in the next section.

5 Applications

One of the unique applications of MPI ROMS is to simulate both the large-scale
ocean circulation (usually at coarse-spatial resolutions) over a particular ocean basin
(e.g., the Pacific Ocean) or the whole globe, as well as the small-scale ocean circulation
(usually at high-spatial resolutions), over one or more selected areas of interest. Using
the MPI ROMS described in previous sections, we have developed a scale model of the
whole Pacific basin at 12.5-km resolutions and two 5-km regional models of the coasts
of the North and South American continents. The scientific objective of the regional
modeling approach is to simulate a particular oceanic region with sufficient spatial
resolutions. The nested-modeling approach coupling a regional, high-resolution ocean
model within a coarse-resolution ocean model, usually over a much larger domain,
will allow one to model the oceanic response to both local and remote forcing.

The Pacific Ocean model domain extends in latitude from 45°S to 65°N, in lon-
gitude from 100°E to 70°W, and is discretized into 1520 x 1088 grid cells with a
horizontal resolution of 12.5-km. The underlying bottom topography is extracted
from ETOPO5 [8], with a minimum depth of 50 m near the coastal wall and a maxi-
mum depth of 5500 m in the deep ocean. Water depth is discretized on to 30 layers
following the s-coordinates [2], with stretching parameters #=7 and 6,=0 to allow a
good representation of the surface boundary layer everywhere in the domain. The
prognostic variables of the model are the sea surface height (, potential temperature
T, salinity S, and horizontal components of the velocity u,v. Initial 7" and S are



obtained from a long-term climatology [9]. The model was spun-up first for 8 years,
forced with climatological (or long-term mean) air-sea fluxes. Then it was integrated
for 15 years, forced with real-time air-sea fluxes during 1990-2004. The surface forc-
ing consists of the monthly mean air-sea fluxes of momentum, heat, and fresh water
derived from the Comprehensive Ocean-Atmosphere Data Set (COADS) climatology
[10]. For the heat flux, a thermal feedback term is also applied [11].

Our open boundary conditions are based on the combined method of the Som-
merfeld radiation conditions and a nudging term:

o9 0o
a + Cm(a) + Cy(

0¢ 1

50) =6 -1) (1)
with 7 as the time scale for nudging the model solution ¢ to external data i, which is
obtained from monthly climatology. The phase speeds ¢, and ¢, are projections of the
oblique radiation of Raymond and Kuo [12]. Although the techniques described above
have been widely used in computational mathematics, there are many issues and dif-
ficulties related to MPI coding because the message passing involves the boundary
parallelization. These issues have not been resolved in the original sequential code.
In this study, we have put a great effort initially in designing the compatibility be-
tween the open boundary algorithms and the external data. By carefully using the
MPI communication calls with the open boundary algorithms and the external data,
the parallel code reproduced the same data from the original sequentical code. As
shown in Figure 5, the open boundary conditions are now working properly in real
applications.

Figure 5 shows a snapshot of the simulated sea surface temperature during the fall
season toward the end of the eighth year. In agreement with observations, both the
“warm pool” in the western equatorial Pacific and the “cold tongue” in the eastern
equatorial Pacific are well simulated. Tropical Instability Waves are also reproduced
in the eastern equatorial Pacific. These waves have a wavelength on the order of 1000
km and a periodicity of approximately 30 days propagating westward. Both the cold
tongue and the Tropical Instability Waves have tremendous impact on how much cold
water upwells from the deep ocean and play major roles in biological productivity and
the carbon cycle in the ocean. Away from the equator, there is a clockwise ocean flow
in the North Pacific and a counterclockwise one in the South Pacific. These middle
latitude circulation “gyres” are forced by atmospheric winds and play an important
role in the air-sea interactions that impact weather and climate.

The parallel MPT ROMS model was extensively verified against the shared-memory
ROMS model that had already been verified against the original sequential code.
From our current numerical results, qualitatively, the MPI-ROMS reproduces many
of the observed features in the Pacific Ocean, another testimony to the success of
the parallelization procedure. Encouraged by this initial success, we are currently in
the process of systematically evaluatng the model solution against various existing
observational datasets.



6 Concluding Remarks

We have successfully developed a parallel version of the ocean model ROMS on a
shared-memory and distributed-memory system. An efficient, flexible, and portable
parallel ROMS code has been designed using the MPI programming model. It pro-
duces significant speedup in execution time, which will dramatically reduce the total
data processing time for complex ocean modeling. The code scales excellently for
certain numbers of processors, and achieves good speedup in performance as the
number of processors increases. Superlinear scalability has been obtained on up
to 200 precessors on the Columbia, which is sufficient for a regional ocean model
to achieve high-resolution simulations with a moderate numbers of processors. Al-
though the code experienced slow down for larger number of processors, it can be
improved if optimization techniques are applied. The code is ready to be ported to
any shared-memory or distributed-memory parallel system that supports the thread
programming model or the MPI programming model.

Based on the parallel version of ROMS, new numerical simulations of ocean flows
have been carried out, and a detailed numerical study of the Pacific coast shows
many interesting features. The parallel code has been also applied to study other
coastal oceans. Several coastal models have been successfully implemented by using
the parallel ROMS, and the data have been verified by the real ocean data from
satellites, which will be reported separately. The present results illustrated here
clearly demonstrate the great potential for applying this approach to various realistic
scientific applications.
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Figure 5: Snapshot of simulated sea surface temperature from the MPI-ROMS North
Pacific model with a domain in latitude from 45°S to 65°N and in longitude from
100°E to 70°W .
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